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Al-Mg-Si (6xxx series) aluminium alloys are widely used in extrusion due to their excellent
balance of strength, toughness, and extrudability. The industry is increasingly shifting toward
lightweight, medium to high-strength materials, particularly for automotive and defence
applications, where aluminium extrusion alloys are favoured for their high strength-to-weight
ratio and recyclability. Among aluminium alloys, the 6xxx series accounts for nearly 90 % of all
extrusion products, as they offer superior extrusion speeds and surface quality compared to other
extrudable alloy series. However, its strength limits its applicability, requiring improvements in
mechanical properties for more demanding applications.

This study focuses on modification of a medium-strength AI-Mg-Si (AA6082 based) alloy with
0.4-0.5 wt.% zirconium (Zr) addition. The influence of Zr on grain refinement, precipitation
behaviour, and mechanical property enhancement was investigated using microstructural
characterization techniques such as optical microscopy, scanning electron microscopy, and phases
formed using X-ray diffraction. Pilot-scale billet casting and extrusion of a 60 mm tube, followed
by T6 heat treatment, demonstrated the effectiveness of Zr addition. The modified composition
achieved an ultimate tensile strength (UTS) of 354 MPa and an elongation up to 16 %. This study
highlights the potential of Zr addition in improving the performance of 6xxx series alloys, making
them suitable for medium-strength, lightweight applications in various industries.
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1. Introduction

6xxx series Aluminium alloys, comprising of Al-Mg-Si system are commercially popular in the
automotive and construction industries. Owing to their favorable properties, they are now gaining
traction in the defense and aerospace sectors as well [1-2]. Among the 6xxx series aluminium
alloys, AA6082 is widely preferred for high-strength applications. This alloy contains magnesium
and silicon, which enable precipitation hardening by forming Mg,Si precipitates (B’ and B’’),
while manganese and chromium contribute to dispersoid strengthening by forming a-Al (Mn, Cr)
Si dispersoids. The final properties of the alloy are influenced by its chemical composition,
casting conditions, and subsequent forming processes. Extrusion of Aluminium alloys is a high
temperature forming process in which recrystallization of the microstructure is an inherent and
essential part of the operation. Recrystallized microstructures tend to reduce the mechanical
properties of Aluminium alloys. However, transition elements like zirconium and scandium are
used as high-temperature recrystallization inhibitors by forming Al3(Sc, Zr), aiding in grain
refinement and enhancing the alloy performance.
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Scandium, being a rare and expensive element, limits its widespread use. Consequently,
zirconium (Zr) has been more extensively utilized, though typically restricted to a maximum of
0.3 wt.%. In this study, we explored the effects of adding over 0.4 wt.% Zr to the commercially
available AA6082 alloy, aiming to investigate microstructural refinement and potential
improvements in mechanical properties. In cast aluminium alloys, higher Zr additions are known
to refine microstructure and improve properties. Building on this, we added over 0.4 wt.% Zr to
wrought AA6082 to explore similar benefits. Jan et al. showed that 0.4—0.6 wt.% Zr in Al-Ni cast
alloys promoted Al;Zr nucleation, followed by dendritic a-Al growth [3]. Feng et al reported that
the interatomic spacing values of interatomic spacing misfit and interplanar mismatch between
Al; Zr and Al are very small, implying high grain refining efficiency of AlsZr in Al [4].

Birol et al. reported that the simultaneous addition of 0.13 wt.% Zr and 0.15 wt.% Cr enhances
recrystallization resistance, which is attributed to the formation of Al (Cr, Mn, Fe) Si and (Al,
Si);Zr dispersoid particles [5]. Similarly, Schmid et al. observed that the addition of 0.2 wt.% Zr
to the AA6082 alloy resulted in a 45 MPa increase in ultimate tensile strength (UTS), primarily
due to suppressed recovery and recrystallization processes, owing to a higher dispersoid density

[6].

Rakhmonov et al. [7] reported that the presence of a large volume of B” precipitates, a smaller
quantity of B’ precipitates, and fine dispersoids in the alloy containing 0.5 wt.% Mn led to a
significant increase in yield strength at ambient temperature by 65—75 MPa under the T5 condition
compared to the base alloy lacking dispersoids.

In the present study, Mn, Si, and Zr are incorporated to introduce additional strengthening
mechanisms beyond conventional Mg,Si precipitation hardening. The combined effect of these
alloying elements and the associated strengthening mechanisms is evaluated through the tensile
properties of the developed alloy. The objective is to synergize dispersoid and precipitate
strengthening contributions from these additions to achieve a tensile strength exceeding 350 MPa.

2. Materials and Methods

Table 1 presents the target chemical compositions of the developed alloys from previous studies.
The base alloy was designed to contain Mg and Si to facilitate the formation of 6-type precipitates,
while Mn and Cr were incorporated to promote the formation of a-AlMnSi dispersoids.
Additionally, Zr was added to form Al;Zr dispersoids, contributing to enhanced thermal stability
and mechanical properties.

Table 1. Chemical composition of the alloys melted.
Alloys Zr Si Mn Mg Fe Cr Al (Wt.%)

Wt.% 0.45 1.1 0.91 0.91 0.18 0.25 Remaining

The alloy was prepared using an Inductotherm induction furnace equipped with a 25-kg capacity
crucible. High-purity Al (99.8 %) served as the base metal, and alloying elements were introduced
using master alloys such as AIMnl10, AlCu30, AlZr5, AlCr10, and AlSi50. Pure magnesium
(99.1 %) was added towards the end of the melting process to minimize oxidation losses. The
melt temperature was maintained at 700 °C during alloying and the pouring temperature is
maintained at 760 °C.

Degassing tablets were used to eliminate dissolved gases, and glass fiber filter paper was placed
over the mold to trap non-metallic inclusions. Grain refinement was not employed owing to Zr-
induced poisoning, which adversely affects the nucleating efficiency of standard grain refiners.
The molten metal was poured into a preheated crucible at approximately 750 °C. The resulting
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The addition of excess zirconium resulted in the formation of DO23-type (Al, Si):Zr precipitates,
which are incoherent with the a-Al matrix. These dispersoids contributed to grain boundary
pinning through the Zener drag effect, thereby enhancing the strength of the alloy. The excess
addition of silicon (Si) and manganese (Mn) further enhanced the strength of the developed alloy
through the formation of Mn-rich dispersoids and Mg.Si precipitates via age hardening. These
combined effects significantly contributed to both the strength and elongation of the alloy.

Extrusion of the developed alloy facilitated the breakdown of primary intermetallics formed
during casting. Furthermore, Zr precipitates effectively suppressed high-temperature grain
growth, leading to microstructural refinement and improved mechanical strength.
Thermodynamic simulations were validated through experimental casting of the alloy, where the
addition of zirconium resulted in a tensile strength improvement of approximately 50 MPa. It is
anticipated that utilizing a proper direct chill (DC) casting facility will lead to further strength
enhancements, which will be explored in future work.
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